

Synergies of (UPC) pA collisions with EIC

Daniel Tapia Takaki

Synergies of pp and pA collisions with an EIC Brookhaven National Lab
27 June 2017

1

Plan of this talk

- Status of LHC analyses
- Presentation of "Energy dependence of dissociative J/Ψ photoproduction as a signature of gluon saturation at the LHC"
 J. Cepina, J.G. Contreras and DTT Phys. Lett. B766 (2017) 186-191

Low x/dipole - type approaches to exclusive VM Ryskin; production

Marti,Ryskin,Teubner; Jones, Martin, Ryskin,Teubner

In the proton rest frame: the formation time of dipole is much longer than the interaction time with the target. Allows to factorize the process.

See A. Stasto talk at PHOTON'17

Lowest order: non-relativistic approximation to J/ψ wave function

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} \left(\gamma^* p \to J/\psi \ p \right) \Big|_{t=0} = \frac{\Gamma_{ee} M_{J/\psi}^3 \pi^3}{48\alpha} \ \left[\frac{\alpha_s(\bar{Q}^2)}{\bar{Q}^4} x g(x, \bar{Q}^2) \right]^2 \left(1 + \frac{Q^2}{M_{J/\psi}^2} \right)$$

$$\bar{Q}^2 \; = \; (Q^2 + M_{J/\psi}^2)/4 \, , \qquad \quad x \; = \; (Q^2 + M_{J/\psi}^2)/(W^2 + Q^2) \,$$

In principle need to take into account skewed gluon distribution.

$$R_g = rac{2^{2\lambda+3}}{\sqrt{\pi}} rac{\Gamma(\lambda+rac{5}{2})}{\Gamma(\lambda+4)}$$
 with $\lambda(Q^2) = \partial \left[\ln(xg)\right]/\partial \ln(1/x)$

Shuvaev, Golec-Biernat, Martin, Ryskin

Diehl: Eur. Phys. J. A (2016) 52: 149

Exclusive VM photoproduction

• Elastic J/ψ production appears as a candidate to signal saturation effects at work

Exclusive J/\pu photoproduction

Phys.Rev.Lett. 113 (2014) 23, 232504

A natural explanation is that no change in the behaviour of the gluon PDF in the proton is observed between HERA and LHC energies" PRL 113 (2014) 232504.

Exclusive J/\pu photoproduction

In pPb in ALICE, W_{Yp} from 20 GeV to 1.5 TeV

Martin Hentschinski

NLL BFKL calculation - no saturation Very good description of the data Approaches with saturation work well too..

WG2; Low x and Diffraction

t-dependence

• t-differential measurements give a gluon tranverse mapping of the hadron/nucleus.

Exclusive Vector Meson Production in e+A

- Low-t: coherent diffraction dominates gluon density
- High-t: incoherent diffraction dominates gluon correlations
 - → Need good breakup detection efficiency to discriminate between the two scenarios
 - unlike protons, forward spectrometer won't work for heavy ions
 - measure emitted neutrons in a ZDC
 - rapidity gap with absence of break-up fragments sufficient to identify coherent events

INT & DIS workshop

VM exclusive and dissociative production

...so we do not know if gluon density saturates (yet), but maybe it fluctuates?

Heikki Mantysaari

Model the geometric fluctuations of density inside the proton

WG2; Low x and Diffraction

Coherent VM production: target stays intact

$$\frac{\mathrm{d}\sigma^{\gamma^*p\to Vp}}{\mathrm{d}t}\sim |\langle \mathcal{A}(x,Q^2,t)\rangle|^2$$

Incoherent VM diffraction: target breaks up.

$$\frac{\mathrm{d}\sigma^{\gamma^*p\to Vp^*}}{\mathrm{d}t} \sim \langle |\mathcal{A}(x,Q^2,t)|^2 \rangle - \left| \langle \mathcal{A}(x,Q^2,t) \rangle \right|^2$$

At high energies the incoherent cross section decreases with energy, due to increase and overlap of hotspots

Jan Cepila

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Energy dependence of dissociative J/ψ photoproduction as a signature of gluon saturation at the LHC

J. Cepila a, J.G. Contreras a,*, J.D. Tapia Takaki b

² Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic

Department of Physics and Astronomy, The University of Kansas, Lawrence, KS, USA

ARTICLE INFO

Article history:

Received 30 August 2016 Received in revised form 1 December 2016 Accepted 23 December 2016 Available online 10 January 2017 Editor: M. Doser

Keywords:

Gluon saturation Vector meson photoproduction LHC

ABSTRACT

We have developed a model in which the quantum fluctuations of the proton structure are characterised by hot spots, whose number grows with decreasing Bjorken-x. Our model reproduces the $F_2(x,Q^2)$ data from HERA at the relevant scale, as well as the exclusive and dissociative J/ψ photoproduction data from H1 and ALICE. Our model predicts that for $W_{\gamma p} \approx 500$ GeV, the dissociative J/ψ cross section reaches a maximum and then decreases steeply with energy, which is in qualitatively good agreement to a recent observation that the dissociative J/ψ background in the exclusive J/ψ sample measured in photoproduction by ALICE decreases as energy increases. Our prediction provides a clear signature for gluon saturation at LHC energies.

© 2017 The Authors, Published by Elsevier B,V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

Dissociative production of J/V and gluon saturation

Daniel Tapia Takaki University of Kansas

Work in collaboration with J. Cepina and J. G. Contreras Phys. Lett. B766 (2017) 186-191

Exclusive and dissociative J/V production

Prediction for dissociative production

Phys.Rev.Lett. 113 (2014) 23, 232504

Low
$$W_{gp}$$
 energy point $<\!W_{gp}\!>\!\sim 30$ GeV

High
$$W_{gp}$$
 energy point $< W_{gp} > \sim 700 \text{ GeV}$

Exclusive and dissociative J/V production

The amplitude in the dipole picture

x related to Wyp which is related to the rapidity of the vector meson V

photon-dipole wave function

Dipole-Target cross section pQCD physics gets here!

The dipole-largel cross section

dipole target amplitude

$$\frac{d\sigma_{\text{dip}}}{d\vec{b}} = 2N(x, \vec{r}, \vec{b})$$

Factorised assumption

Proton is a sum of hot spots

$$N(x,r,b) = \sigma_0 N(x,r) T(\vec{b})$$

Golec-Biernat Wuesthoff model

$$N^{\text{GBW}}(x,r) = \left(1 - e^{-r^2 Q_s^2(x)/4}\right)$$

$$Q_s^2(x) = Q_0^2(x_0/x)^{\lambda}$$

$$T(\vec{b}) = \sum_{N_{hs}}^{1} \sum_{i=1}^{N_{hs}} T_{hs}(\vec{b} - \vec{b_i})$$

Gaussian hot spots

$$T_{hs}(\vec{b} - \vec{b_i}) = \frac{1}{2\pi B_{hs}} e^{-\frac{(\vec{b} - \vec{b_i})^2}{2B_{hs}}}$$

Number of hot spots

This only redistributes T(b) in impact parameter. At each x the integral of T(b) over b^2 is one

Comparison to data

Parameters fixed using data:

- λ using x dependence of exclusive vector meson production
- oousing t dependence of exclusive production
- xo normalisation of x dependence of exclusive production hot spot width from t dependence of dissociative production Number of hot spots from x dependence of dissociative production

Comparison la inclusive data

$$F_2(x,Q^2) = \frac{Q^2}{4\pi^2\alpha_{em}} \left(\sigma_T^{\gamma^*p}(x,Q^2) + \sigma_L^{\gamma^*p}(x,Q^2)\right) \begin{array}{c} 0.8 \\ 0.6 \end{array}$$

Good description even though the model was developed for vector meson production

Comparison to vector meson data

Prediction for dissociative production

some comments

- · The parameters take expected values (see discussion in the paper).
- Even though the model describes reasonably well data, it is a simple model, so the main conclusion is qualitative: at large energies the dissociative production cross section turns around and decreases.
- The turn around has a geometric origin reminiscent of percolation, and implies that all configurations of a black disk look the same and the variance then disappears.
- · Quantitatively, the turn around in the model happens at Wyp around 500 GeV
- · ALICE and H1 data suggest that in reality it may even happen at smaller energies

Summary and outlook

- Dissociative photoproduction of J/ψ vector mesons can be used to look for gluon saturation
- The signature is striking: the cross section rises with energy up to a maximum to decrease steeply afterwards
- There are experimental and phenomenological suggestions that this is happening within the energy range accessible at the LHC
- It would be very interesting if we could measure the energy dependence of the dissociative production cross section

DIS 2017

Exclusive production of $\psi(2s)$ and Υ

Exclusive production $\psi(2s)$ at 13 TeV

Bartłomiej Rachwał LHCb

Alexander Bylinkin CMS

 $\sigma_{\psi(2S)\to\mu^+\mu^-}(2.0 < \eta(\mu^{\pm}) < 4.5) = 9.4 \pm 1.3(stat) \pm 0.5(sys) \pm 0.4pb$

A fit with power-law A X (W/400)⁸ to the CMS data $\delta = (0.96 \pm 0.43)$, $A = 655 \pm 196$ Data compatible with power-law dependence of σ(W_,), disfavours LO pQCD predictions

pPb 32.6 nb⁻¹ (5.02 TeV) da/d|t| nb/(GeV)² CMS 2.9 ± 0.45 -4.5 ± 1.7 — χ² minimization fit to data 10-1 0.1 0.2 0.3 0.4 0.5 0.6 |t| (GeV)2

Still missing: energy dependence of t distribution for vector meson

WG2; Low x and Diffraction

One more thing ...

Nuclear suppression factor in Pb (S)

See V. Guzey talk today

Vector meson photoproduction in UPC Pb-Pb

Neutron dependence

$$d\sigma(\text{total})/dy = d\sigma(0\text{n0n})/dy + 2d\sigma(0\text{nXn})/dy + d\sigma(\text{XnXn})/dy$$

There is a factor 2... the emitted neutrons and the photoproduced J/ ψ events appear to be independent processes within the current uncertainty (0nXn ~ Xn0n)

Vector meson photoproduction in UPC Pb-Pb

Neutron dependence

$$d\sigma(\text{total})/dy = d\sigma(0\text{n0n})/dy + 2d\sigma(0\text{nXn})/dy + d\sigma(\text{XnXn})/dy$$

There is a factor 2 since the neutron and the coherent J/ψ are independent processes (confirmed by data)

Two components:

High-x: J/ψ and the emitted neutrons: same rapidity hemisphere

Low-x: J/ψ and the emitted neutrons: opposite rapidity hemisphere

Two different type of topologies

Incoherent photoproduction in UPC Pb-Pb

Total cross section

Low W: $x \sim 10-2$

High W: x~ 10-4

$$\frac{d\sigma_{\text{PbPb}}(y)}{dy} = N_{\gamma/\text{Pb}}(y, M)\sigma_{\gamma\text{Pb}}(y) + N_{\gamma/\text{Pb}}(-y, M)\sigma_{\gamma\text{Pb}}(-y)$$

Incoherent production is expected to be more sensitive to the photon direction (energy dependence). Here 0nXn and Xn0n will unfold the two x-values

Daniel Tapia Takaki

Energy dependence of Incoherent J/ψ

Incoherent J/ψ background (Xn0n): Events are in the High-x region.

At Low-x, incoherent production is very strongly suppressed wrt to High-x region - First time seen in y+Pb interactions

One more thing ...

White paper

 Following the INT workshop, a White Paper on photon-nucleus/proton will be prepared

Coordinated by DTT and in preparation...

LHC schedule

CERN Yellow Report: CERN-PH-LPCC-2015-001

Additional slides

Forward detectors at CMS

